

Preparation and Characterization of Zearalenone Standard Solution for Mycotoxin Analysis

Sornkrit Marbumrung

National Institute of Metrology, Thailand (NIMT)

21st June 2019

Zearalenone (ZEN)

- Zearalenone (ZEN) is a fungal mycotoxin produced by *Fusarium spp*. and present in several types of food but especially in maize and wheat
- It is a non-steroid estrogenic compound which can cause changes in reproductive organs and fertility loss and plus several other toxic effects
- JECFA- provisional maximum tolerable daily intake for ZEN and its metabolites (including α-zearalanol) - 0.5 µg/kg BW/day (CX/FAC 00/19-2000)

EC 1126/2007: setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products (20- 400µg/kg for ZEN)

Zearalenone (ZEN)

Figure 1. Stereoisomerization of *trans*-zearalenone and *cis*-zearalenone at the double bond C11-C12

ZEN is biosynthesized in the *trans*-configuration

ZEN has been shown to readily isomerize to the cis-configuration upon the influence of light

- Food producers need to ensure that their products are toxicologically safe and testing compliance with all legal requirements through the use of analytical.

- An analytical reliability in the testing and monitoring should be ensure

Gravimetric preparation and value assignment of zearalenone (ZEN) in acetonitrile (ACN)

International interlaboratory comparison: CCQM-K154.a

Gravimetric preparation of Zearalenone calibration solution

Figure 2. ZEN stock solution OGP.025 Concentration 130.1± 2.2 µg/g (k=2)

Figure 3. Preparation of ZEN calibration solution (Volume: 250 mL,Stored at -20 °C (dark))

www.nimt.or.th

Measurement equation:

$$w(xi) = \frac{w_z * m_z}{m_{total}}$$
(1)

where;		
	w(xi)	mass fraction of the prepared solution, $\mu g/g$
	Wz	mass fraction of the stock solution prepared from (OGP.025), μ g/g
	mz	mass of the stock solution (OGP.025) added (g)
	m _{total}	mass of the total solution (g)

Measurand	Mass Fraction (µg/g)		
trans-zearalenone	14.73		

Homogeneity study of Zearalenone calibration solution

- ✓ Ten samples were taken in randomly stratified interval
- ✓ The main component ZEN (*trans*-zearalenone) was measured directly without further dilution
- ✓ Aliquots from ampoules were analyzed by HPLC-PDA
- ✓ Three independent replicates in randomly stratified.
- ✓ Trend tests for filling/analysis sequence (linear regressions)
- ✓ Uncertainty of homogeneity was evaluated by one-way ANOVA (u_{bb})

Homogeneity study of Zearalenone calibration solution

LC parameters

Column: Luna C18 100Å, 150 x 4.6 mm

Column temperature: 30 °C

Mobile phase: ACN: $H_2O = 50:50 (v/v)$

Flow rate: 1.0 mL/min

Detector: DAD 254nm (Scan range:190nm-700nm; Slit width: 1.2mm)

Injection volume: 10 µL

Duration: 15 min

Homogeneity study of Zearalenone calibration solution

	$u^*_{bb} = \sqrt{\frac{MS}{r}}$		(2)			
	$S_{bb} = \sqrt{\frac{MS_{be}}{NS_{be}}}$	n n	- <u>1</u> (3)			
Ν	s _{wb} (%)	F	F _{crit}	s _{bb} (%)	u* _{bb} (%)	
29	0.75	0.5573	2.3928	_(1)	0.243	

⁽¹⁾ Not calculable because $MS_{between} < MS_{within}$

- No differences in the within- and between-sample variances could be detected by the F-tests at the 95 % confidence level
- The % u_{bb} of 0.243% was calculated from equation (2) that was the uncertainty contribution due to homogeneity
- www.nimt.or.th d) confirmation, for example by use of an F test, that the between-unit term is not statistically significant at the 95 % level of confidence.

- No significant trend was observed for the injection sequence of ZEN
- No evidence of statistically significant inhomogeneity was observed for main component based either on fill order or analysis order
- ZEN calibration solution is therefore considered homogeneous
 www.nimt.or.th

- ✓ The main component of ZEN was measured directly without further dilution
- ✓ Aliquots from ampoules were analyzed by HPLC-PDA
- Three independent replicates in randomly stratified for the main compound (ZEN) with calibration curves

Linear regressions- Trend tests for stability/analysis sequence Uncertainty of stability (u_{its})

Stability studies are planned in the form of isochronous measurements

Isochronous experiment design

- Reference temp: -20 °C (dark)
- Study temp: 4 °C & 40 °C
- Study duration: 0, 1, 2, 3, 4 weeks (amber ampoule)
- 2 ampoules for each condition, two aliquots for analysis

Stability study of Zearalenone (ZEN) calibration solution

Statistical parameters

	4 °C	40 °C
Slope (b), degree	-0.02189	-0.03596
Standard error of slope (s _b), degree/week	0.015907	0.017068
Degree of freedom	7	7
t _{cal} following equation (4)	1.376045	2.107102
t _{crit} = t(0.05, 7)	2.364624	2.364624
Statistical significance at 95% CI	NO	NO
t*s(b1) u _(its)	0.0048%	0.0051%

•A linear regression functions were calculated for the results according to the conditions during the stability study.

• The slopes were found to be not significant at a 95% confidence level.

The relative uncertainty due to stability was 0.0048%

www.nimt.or.th

Stability study of Zearalenone (ZEN) calibration solution

No drop trends existed for 4°C and 40 °C storage conditions.

✓ ZEN calibration solution is stable at 4°C and 40 °C

- ✓ Two samples were analysed directly without dilution: ZEN 13 and ZEN 33
- ✓ One ampoule of OGP.025 (ZEN stock solution) was used to prepare standards for LC measurements
- ✓ Aliquots from ampoules were taken for HPLC-PDA measurements.
- ✓ Three independent replicates were analyzed for major compound (ZEN) using one point bracketing quantification
- \checkmark The analytical results were compared with *t*-test and recovery test

Verification for measurement of ZEN calibration solution

Figure 4. Comparison of mass fraction result

one point bracketing analytical results agreed with the gravimetric value

Measurement uncertainty

Expanded measurement equation:

$$w(xi) = \frac{w_z * m_z}{m_{total}} \cdot F_{stb} \cdot F_{homo}$$
(5)

where;

w(<i>xi</i>)	: mass fraction of the prepared solution, μg/g
W _z	: mass fraction of the stock solution prepared from (OGP.025), μ g/g
m _z	: mass of the stock solution (OGP.025) added (g)
m _{total}	: mass of the total solution (g)
F _{stb}	: Stability factor, given a value of 1
F _{homo}	: Homogeneity factor, given a value of 1

Measurement uncertainty

Combined measurement uncertainty:

$$\frac{u(w_{xi})}{w_{xi}} = \sqrt{\left(\frac{u(w_z)}{w_z}\right)^2 + \left(\frac{u(m_z)}{m_z}\right)^2 + \left(\frac{u(m_{total})}{m_{total}}\right)^2 + \left(\frac{u(F_{homo})}{F_{homo}}\right)^2 + \left(\frac{u(F_{stb})}{F_{stb}}\right)^2}$$
(6)

where;

u (w_{xi})

 $u(w_{z})$

 $u(F_{homo})$

u(F_{stb})

 $u(m_z), u(m_{total})$

- : standard uncertainty of the prepared standard solution
 - : standard uncertainty of the stock standard solution obtained from the certificate (OGP.025)
 - : standard uncertainties of masses estimated from the bias of balance and the precision of balance
 - : standard uncertainty due to homogeneity factor, estimated from ANOVA
 - : standard uncertainty due to stability testing at 4 °C, estimated from trend analysis

www.nimt.or.th EURACHEM/CITAC Guide CG 4 Quantifying Uncertainty in Analytical Measurement

Figure 5 Diagram indicating the input quantities and their related uncertainty sources

Result

Measurand	Mass Fraction (µg/g)	Combined Standard Uncertainty (µg/g)	Coverage Factor (k)	Expanded Uncertainty (µg/g)
<i>trans</i> -Zearalenone	14.73	0.148	2.0	0.30

International interlaboratory comparison: CCQM-K154.a

ZEN solution sent to BIPM

4 ampoules

Determine and Compare ZEN mass fraction by

- UV spectrophotometry
- LC- UV

International interlaboratory comparison: CCQM-K154.a

	ZEN							
			U	U _{rel} %	U	Urel %	DoE	U(DoE)
NIMT	Gravimetric	14.73	0.15	1.00	0.30	2.01		
BIPM	Measured A	14.45	0.13	0.92	0.27	1.84	0.28	0.40
	Measured B	14.51	0.10	0.66	0.19	1.32	0.22	0.35

- \checkmark ZEN calibration solution in acetonitrile was prepared by gravimetric method
- ✓ Homogeneity studies for ZEN solution showed satisfactory results
- ✓ *trans*-zearalenone (major component) was stable at 4°C and 40 °C conditions during the 4 weeks of study
- ✓ BIPM determined and compared the ZEN mass fractions by UV spectrophotometry and HPLC-UV
- ✓ Successfully, gravimetric value prepared by NIMT agreed with the analytical values obtained from BIPM

Acknowledgement

BIPM

NIMT

PTB

Organic Analysis staffs

Thank you